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ASPIRE Phase 1 Feasibility

Ammonia Synthesis Plant using Intermittent Renewable Energy

To determine if is technologically and commercially feasible to develop a green

ammonia plant that can run off of intermittent renewable power.

Funded as part of BEIS hydrogen supply competition

* Premise
Large scale grey ammonia plants operate at steady state with hydrogen from steam methane reforming

and with a direct grid connection.

A flexible green ammonia plant capable of running from intermittent renewable energy sources could

1. Address traditional cost disparity between grey and green ammonia

2. Help transition current ammonia production from grey to green

3. Support a future grid with high penetration of intermittent renewables

4. Provide an energy vector for distant windfarms where electrical connection is prohibitively expensive
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Net Zero Challenges

_ + Increasing amounts of excess generation, peak
imbalance of 30-50GW and 3.7 TWh of excess
energy in a week by 2035

» UK will need between 10 and 50 TWh of
hydrogen storage by 2050
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Energy Density Comparison
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Key
B Carbon-based fuels
B Ammonia
B Hydrogen
» For a zero-carbon fuel, liquid

ammonia has a very good energy
density.

» Cooling or pressure requirements
for liquid storage are far less severe
for ammonia

Diesel

Petrol

Liquefied Natural Gas (-160 °C)
Liguid Ammonia (-38 °C)
Liquid Ammonia (10 atm)
Liquid Hydrogen (-253 °C)
Hydrogen Gas (700 atm)

Hydrogen Gas (200 atm)
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Energy Density (kWh/L)!
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1. Energy densities are determined using the Lower Heating Value of combustion using data from NIST and h2tools.org. The state of each fuel is 15 C and 1 atmosphere 5 @
» W

unless otherwise stated in the y axis labels.



Storage costs - Hydrogen vs Ammonia
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FIG. 2.4 Installed capital expenditure of bulk hydrogen storage options compared to aboveground

refrigerated ammonia based on literature values.
Techno-Economic Challenges of Green Ammonia as an Energy Vector by Valerie-Medina & Banares Alcantara

 Salt caverns offer the only
comparative cost with
ammonia stores

Large Scale ammonia
storage is

"

proven

» Long term above ground
gaseous hydrogen storage is
uneconomic.
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How Is Green Ammonia made?
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Adding Flexibility:
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ASPIRE Concept Design

Off the shelf sub-systems

Thermal
Store

On-site
137kW
Renewable
Power

PSA Nitrogen } Store ﬁ

Generator
4 New twist on established Haber-Bosch

/

Modular reactor with coupled thermal management system facilitates :
« High turn down ratio to 5% of full capacity and fast response rate

« Ammonia generation rate tracking available renewable power

« Minimal expensive energy battery & energy storage
o @
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ASPIRE Carbon Benefits Assessment

Life cycle assessment of a 1T0MW ASPIRE
plant predicted 0.18 kgCO2e/ kg ammonia.

Threshold for low carbon ammonia is 0.42
kgCO2e/ kg ammonia (based on low carbon
hydrogen standard)

Ammonia produced from natural gas
produces around 2.6 kgC02e/ kg ammonia

Preliminary Studies,
Consultations
End of Life 5.90%

: 0.19%
0.07% Pilot Demonstrator

Plant
0.22%

Operational Water
Use

Equipment
Procurement
Operational Energy 26.12%
Use
47.64%
Construction/
Instaliation Processi
0.53%

Use
1.39%

Maitenance, Repair,
Refurbishment
11.29%

Replacement
6.66%

Cooling Gas Compression

4% 13%

N2 - PSA
2%

Audit

NG,
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A cashflow model has been developed to predict the price of ASPIRE ammonia.
This is shown for electricity prices of £20 and £50/MWh as follows:

1400 : :
Peak 2022 ammonia price . . : -
——————————————————————————————————————————————————————————————— U.S. dollars per metric ton Cla
$1,800 ;
1200 Max ammonia
— $1,600
(b
= $1,400 <«— Current
E 1000 Max 51200 $1,400 or
ol iin ; us. Gui £1,100
- - $1.000 oas per tonne
0 800 Western
5 Min $800 Europe
= $600
£ 600 Bridging gap between ASPIRE 400
E ammonia and grey ammonia will $ Historic
O require a carbon price or subsidy $200 $350 or
8 400 : . £275 per
= v 2020 ammonia price $0 1 . tonne
0 Jan-20 Jan-21 Jan-22
200 Source: US Energy Information Administration
0 . . Note: Min and Max in left figure have been derived using lower and upper
£20/lMWh  Electricity Price  £50/MWh : J 9 PP

credible Internal Rates of Return, annual maintenance and contingency costs

Price of grey ammonia is coupled to natural gas prices that have risen significantly in the last two years. Predicted

price of ASPIRE green ammonia compares very favourably with current grey ammonia prices. It is currently more

expensive than the historic, and possibly future price of ammonia.

However, ASPIRE green ammonia is insulated from the volatility of grey ammonia pricing which will help @
investment decisions. 11 -
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Phase 1 Conclusions
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At project commencement key requirements were outlined that would need to be achieved to
demonstrate feasibility of the design. The following summarises the findings against these
requirements.

« The plant can run on an intermittent source of electricity from a wind farm of output 10 -
200 MW, associated with onshore wind farm sizes.

« Technology exists to develop an operational plant within the next 3 years.
« There is a market for green ammonia produced from intermittent renewables at this scale.

« Through-life cost of the green ammonia produced from intermittent renewable power is
competitive with other green ammonia technologies.

« Through-life carbon emissions of the green ammonia is the green ammonia is <0.42
kgCO,/kgNH,

« The technology meets all safety and regulatory requirements.

12 @D
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